3,584 research outputs found

    Routing quantum information in spin chains

    Get PDF
    Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.Comment: added references in v

    Distributed control in virtualized networks

    Get PDF
    The increasing number of the Internet connected devices requires novel solutions to control the next generation network resources. The cooperation between the Software Defined Network (SDN) and the Network Function Virtualization (NFV) seems to be a promising technology paradigm. The bottleneck of current SDN/NFV implementations is the use of a centralized controller. In this paper, different scenarios to identify the pro and cons of a distributed control-plane were investigated. We implemented a prototypal framework to benchmark different centralized and distributed approaches. The test results have been critically analyzed and related considerations and recommendations have been reported. The outcome of our research influenced the control plane design of the following European R&D projects: PLATINO, FI-WARE and T-NOVA

    Approaches for Future Internet architecture design and Quality of Experience (QoE) Control

    Get PDF
    Researching a Future Internet capable of overcoming the current Internet limitations is a strategic investment. In this respect, this paper presents some concepts that can contribute to provide some guidelines to overcome the above-mentioned limitations. In the authors' vision, a key Future Internet target is to allow applications to transparently, efficiently and flexibly exploit the available network resources with the aim to match the users' expectations. Such expectations could be expressed in terms of a properly defined Quality of Experience (QoE). In this respect, this paper provides some approaches for coping with the QoE provision problem

    Author as Character and Narrator: Deconstructing Personal Narratives from the r/AmITheAsshole Reddit Community

    Full text link
    In the r/AmITheAsshole subreddit, people anonymously share first person narratives that contain some moral dilemma or conflict and ask the community to judge who is at fault (i.e., who is "the asshole"). In general, first person narratives are a unique storytelling domain where the author is the narrator (the person telling the story) but can also be a character (the person living the story) and, thus, the author has two distinct voices presented in the story. In this study, we identify linguistic and narrative features associated with the author as the character or as a narrator. We use these features to answer the following questions: (1) what makes an asshole character and (2) what makes an asshole narrator? We extract both Author-as-Character features (e.g., demographics, narrative event chain, and emotional arc) and Author-as-Narrator features (i.e., the style and emotion of the story as a whole) in order to identify which aspects of the narrative are correlated with the final moral judgment. Our work shows that "assholes" as Characters frame themselves as lacking agency with a more positive personal arc, while "assholes" as Narrators will tell emotional and opinionated stories.Comment: Accepted to the 17th International AAAI Conference on Web and Social Media (ICWSM), 202

    Ultrafast flow of interacting organic polaritons

    Full text link
    The strong-coupling of an excitonic transition with an electromagnetic mode results in composite quasi-particles called exciton-polaritons, which have been shown to combine the best properties of their bare components in semiconductor microcavities. However, the physics and applications of polariton flows in organic materials and at room temperature are still unexplored because of the poor photon confinement in such structures. Here we demonstrate that polaritons formed by the hybridization of organic excitons with a Bloch Surface Wave are able to propagate for hundreds of microns showing remarkable third-order nonlinear interactions upon high injection density. These findings pave the way for the studies of organic nonlinear light-matter fluxes and for a technological promising route of dissipation-less on-chip polariton devices working at room temperature.Comment: Improved version with polariton-polariton interactions. 13 pages, 4 figures, supporting 6 pages, 6 figure

    Correcting Sociodemographic Selection Biases for Population Prediction from Social Media

    Full text link
    Social media is increasingly used for large-scale population predictions, such as estimating community health statistics. However, social media users are not typically a representative sample of the intended population -- a "selection bias". Within the social sciences, such a bias is typically addressed with restratification techniques, where observations are reweighted according to how under- or over-sampled their socio-demographic groups are. Yet, restratifaction is rarely evaluated for improving prediction. Across four tasks of predicting U.S. county population health statistics from Twitter, we find standard restratification techniques provide no improvement and often degrade prediction accuracies. The core reasons for this seems to be both shrunken estimates (reduced variance of model predicted values) and sparse estimates of each population's socio-demographics. We thus develop and evaluate three methods to address these problems: estimator redistribution to account for shrinking, and adaptive binning and informed smoothing to handle sparse socio-demographic estimates. We show that each of these methods significantly outperforms the standard restratification approaches. Combining approaches, we find substantial improvements over non-restratified models, yielding a 53.0% increase in predictive accuracy (R^2) in the case of surveyed life satisfaction, and a 17.8% average increase across all tasks

    Breaking (Global) Barriers in Parallel Stochastic Optimization with Wait-Avoiding Group Averaging

    Full text link
    Deep learning at scale is dominated by communication time. Distributing samples across nodes usually yields the best performance, but poses scaling challenges due to global information dissemination and load imbalance across uneven sample lengths. State-of-the-art decentralized optimizers mitigate the problem, but require more iterations to achieve the same accuracy as their globally-communicating counterparts. We present Wait-Avoiding Group Model Averaging (WAGMA) SGD, a wait-avoiding stochastic optimizer that reduces global communication via subgroup weight exchange. The key insight is a combination of algorithmic changes to the averaging scheme and the use of a group allreduce operation. We prove the convergence of WAGMA-SGD, and empirically show that it retains convergence rates similar to Allreduce-SGD. For evaluation, we train ResNet-50 on ImageNet; Transformer for machine translation; and deep reinforcement learning for navigation at scale. Compared with state-of-the-art decentralized SGD variants, WAGMA-SGD significantly improves training throughput (e.g., 2.1x on 1,024 GPUs for reinforcement learning), and achieves the fastest time-to-solution (e.g., the highest score using the shortest training time for Transformer).Comment: Published in IEEE Transactions on Parallel and Distributed Systems (IEEE TPDS), vol. 32, no. 7, pp. 1725-1739, 1 July 202
    • …
    corecore